skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Yuan‐Shin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Organic electrochemical transistors (OECTs) are gaining significant attention due to their high sensitivity, customizability, ease of integration, and low‐cost manufacturing. In this paper, we design and develop a flexible dual‐gate OECT based on laser‐scribed graphene (LSG) with modified OECT gates for the detection of dopamine and glutamate, two critical neurotransmitters (NTs). The developed OECTs are fully carbon‐based and environmentally friendly. By modifying the gates of OECTs with biopolymer chitosan and L‐Glutamate oxidase enzyme, highly selective and sensitive measurements are successfully achieved with detection limits of 5 nmfor dopamine and 1 µmfor glutamate, respectively. The modified dual‐gate shows no interference between the detections of two neurotransmitters, making it a promising tool for customized multi‐neurotransmitter analysis. The results demonstrate the potential of LSG‐based OECTs in customizable biosensing applications, offering a flexible, cost‐effective platform for biomedical disorder diagnostics. 
    more » « less
  2. Abstract Neural probe devices have undergone significant advancements in recent years, evolving from basic single‐functional devices to sophisticated integrated systems capable of sensing, stimulating, and regulating neural activity. The neural probes have been demonstrated as effective tools for diagnosing and treating numerous neurological disorders, as well as for understanding sophisticated connections and functions of neuron circuits. The multifunctional neural probe platforms, which combine electrical, optical, and chemical sensing capabilities, hold promising potential for revolutionizing personalized healthcare through closed‐loop neuromodulation, particularly in the treatment of conditions such as epilepsy, Parkinson's disease, and depression. Despite these advances, several challenges remain to be further investigated, including biocompatibility, long‐term signal quality and stability, and miniaturization, all of which hinder their broader clinical application. This paper provides an overview of the design principles of the neural probe structures and sensors, fabrication strategies, and integration techniques for the advanced multi‐functional neural probes. Key electrical, optical, and chemical sensing mechanisms are discussed, along with the selection of corresponding functional materials. Additionally, several representative applications are highlighted, followed by a discussion of the challenges and opportunities that lie ahead for this emerging field. 
    more » « less